Astronomy workshop

 runic
 Posts: 2455
 Joined: 14 Aug 2010 09:36
 Location: California über alles
Astronomy workshop
This is a workshop to help conworlders build galaxies, solar systems, planets, and moons that are scientifically accurate. Conworlders can receive help with equations here.
Things like AU, solar mass and luminosity, the length of a year, gravity, density, escape velocity, orbital eccentricity, the phases of moons, etc. are all fair game here.
Things like AU, solar mass and luminosity, the length of a year, gravity, density, escape velocity, orbital eccentricity, the phases of moons, etc. are all fair game here.
♂♥♂♀
Squirrels chase koi . . . chase squirrels
My KankonianEnglish dictionary: 60,137 words and counting
31,416: The number of the conlanging beast!
Squirrels chase koi . . . chase squirrels
My KankonianEnglish dictionary: 60,137 words and counting
31,416: The number of the conlanging beast!

 runic
 Posts: 2455
 Joined: 14 Aug 2010 09:36
 Location: California über alles
Re: Astronomy workshop
All right. My planet, Bodus, is 2.0251 AU from its Wanos sun. A year on Bodus lasts as long as 3.6504892 years on Earth (1,333.313801631 Earth days). What would the solar mass of Wanos be?
♂♥♂♀
Squirrels chase koi . . . chase squirrels
My KankonianEnglish dictionary: 60,137 words and counting
31,416: The number of the conlanging beast!
Squirrels chase koi . . . chase squirrels
My KankonianEnglish dictionary: 60,137 words and counting
31,416: The number of the conlanging beast!
Re: Astronomy workshop
I'm not sure what help you want here  you have the same equations and equivalent calculator to any of us. Just enter in the numbers.
If you didn't know the equation, you could have just opened up wikipedia. Which tells you that the orbital period is 2*pi*sqrt((a^3)/GM), where G is the gravitational constant and M is the mass of the star.
If you didn't know the equation, you could have just opened up wikipedia. Which tells you that the orbital period is 2*pi*sqrt((a^3)/GM), where G is the gravitational constant and M is the mass of the star.

 runic
 Posts: 2455
 Joined: 14 Aug 2010 09:36
 Location: California über alles
Re: Astronomy workshop
I was using the website https://astrographer.wordpress.com/book ... eoffeddy/ where I found the equation:
M × T2 = R3 (Kepler’s third law)
where T is the orbital period and R is the distance from the sun.
I did the calculation:
2.0251^3 / 1,333.313801631^2 = 0.00000467169
which doesn't seem correct, as the solar mass of a star with a planet orbiting at such a distance and year length should be somewhere in between 1.3 and 1.7. How'd I get 0.00000467169?
♂♥♂♀
Squirrels chase koi . . . chase squirrels
My KankonianEnglish dictionary: 60,137 words and counting
31,416: The number of the conlanging beast!
Squirrels chase koi . . . chase squirrels
My KankonianEnglish dictionary: 60,137 words and counting
31,416: The number of the conlanging beast!
Re: Astronomy workshop
I seem to recall that R needs to be in AUs, M is in Solar Masses and T is in Earth Years in years, not in days, so you should get a mass for your sun of 0.623 Solar Masses, which would be a... K5(?) type star (more or less), which seems to put your planet way outside what the guide suggests is the "habitable" zone for an Earthlike planet.Khemehekis wrote: ↑16 Apr 2019 00:23I was using the website https://astrographer.wordpress.com/book ... eoffeddy/ where I found the equation:
M × T2 = R3 (Kepler’s third law)
where T is the orbital period and R is the distance from the sun.
I did the calculation:
2.0251^3 / 1,333.313801631^2 = 0.00000467169
which doesn't seem correct, as the solar mass of a star with a planet orbiting at such a distance and year length should be somewhere in between 1.3 and 1.7. How'd I get 0.00000467169?
For that and the year you'd want, and roughly the same distance, you'd be looking at an F0 type star (1.7 Solar Masses), with a distance from the star of 2.83 AU (giving a year of 1,333.66 Earth Days).
You can tell the same lie a thousand times,
But it never gets any more true,
So close your eyes once more and once more believe
That they all still believe in you.
Just one time.
But it never gets any more true,
So close your eyes once more and once more believe
That they all still believe in you.
Just one time.
Re: Astronomy workshop
Yep, these particular units are in common use by people working with Solar System dynamics since they simplify the mathematics quite a bit.
I will say that deciding the planet's orbit first and then trying to fit everything else to it is a pretty backwards way to do things. In this case it leaves us with a planet with so low energy influx from the star that it feels safe to say no realistic greenhouse effect could turn it habitable.
sangi39's suggestion of replacing the central star with a F0 type star comes with its own problems since more massive stars exhaust their fuel and become giants much faster than low mass stars. A rough order of magnitude estimate for a star's main sequence lifetime is given by the formula
t ≈ M/L × 1010 yr,
where both the mass M and luminosity L of the star is given in solar units (MSun = 1 and LSun = 1 => tSun ≈ 10 billion years). Observationally we know that for the main sequence stars luminosity scales with the mass roughly as
L/LSun = (M/MSun)3.8.
If you plug this relation into the main sequence lifetime formula, you get an estimate
t ≈ (M/MSun)2.8 × 1010 yr.
For a 1.7 Solar mass star this would give a roughly 2 billion year main sequence lifetime. That could potentially give enough time for complex life to evolve on a planet before the star heats up too much, but the example of life's evolution on Earth suggests that it's most likely way too little.
Re: Astronomy workshop
I hadn't thought about that! I was more concerned with the higher UV outputgach wrote: ↑16 Apr 2019 16:02Yep, these particular units are in common use by people working with Solar System dynamics since they simplify the mathematics quite a bit.
I will say that deciding the planet's orbit first and then trying to fit everything else to it is a pretty backwards way to do things. In this case it leaves us with a planet with so low energy influx from the star that it feels safe to say no realistic greenhouse effect could turn it habitable.
sangi39's suggestion of replacing the central star with a F0 type star comes with its own problems since more massive stars exhaust their fuel and become giants much faster than low mass stars. A rough order of magnitude estimate for a star's main sequence lifetime is given by the formula
t ≈ M/L × 1010 yr,
where both the mass M and luminosity L of the star is given in solar units (MSun = 1 and LSun = 1 => tSun ≈ 10 billion years). Observationally we know that for the main sequence stars luminosity scales with the mass roughly as
L/LSun = (M/MSun)3.8.
If you plug this relation into the main sequence lifetime formula, you get an estimate
t ≈ (M/MSun)2.8 × 1010 yr.
For a 1.7 Solar mass star this would give a roughly 2 billion year main sequence lifetime. That could potentially give enough time for complex life to evolve on a planet before the star heats up too much, but the example of life's evolution on Earth suggests that it's most likely way too little.
But yeah, it's a bit of a problem, and it doesn't look like you can have it all:
A) If you have a year 3.6504892 Earthyears long, for it to be habitable it would have to orbit at 2.83AU around a star with a mass around 1.7 Solar Masses.
B) If you have a distance from the star of 2.0251AU, for it to be habitable it would have to orbit around a star of mass around 1.3 Solar Masses once every 923 days.
It does look like you can fiddle with the mass of the star around those values, but as gach mentioned above, the result will be a in a star outputting a relatively high amount of UV light over a relatively shorter lifespan, which might then affect the sort of atmosphere your planet might have or the biology of the species on the planet.
You can tell the same lie a thousand times,
But it never gets any more true,
So close your eyes once more and once more believe
That they all still believe in you.
Just one time.
But it never gets any more true,
So close your eyes once more and once more believe
That they all still believe in you.
Just one time.

 runic
 Posts: 2455
 Joined: 14 Aug 2010 09:36
 Location: California über alles
Re: Astronomy workshop
Thanks for the help, Sangi39 and Gach!
I guess I'll keep my year length and change the number of AU to 2.83.
And Sangi, thanks for explaining how I was doing the math wrong! Now I'll know that one is supposed to plug in Earthyears, not Earthdays.
I'll post the new planet data for Bodus when I've got this done.
EDIT: My Bodus description now reads: Bodus is a planet in the solar system Wanos, the fifth planet from the sun. Bodus is 2.830244 AU from its Wanos sun (with a solar mass of 1.701255). A year on Bodus lasts as long as 3.6504892 years on Earth (1,333.66 Earth days).
I guess I'll keep my year length and change the number of AU to 2.83.
And Sangi, thanks for explaining how I was doing the math wrong! Now I'll know that one is supposed to plug in Earthyears, not Earthdays.
I'll post the new planet data for Bodus when I've got this done.
EDIT: My Bodus description now reads: Bodus is a planet in the solar system Wanos, the fifth planet from the sun. Bodus is 2.830244 AU from its Wanos sun (with a solar mass of 1.701255). A year on Bodus lasts as long as 3.6504892 years on Earth (1,333.66 Earth days).
♂♥♂♀
Squirrels chase koi . . . chase squirrels
My KankonianEnglish dictionary: 60,137 words and counting
31,416: The number of the conlanging beast!
Squirrels chase koi . . . chase squirrels
My KankonianEnglish dictionary: 60,137 words and counting
31,416: The number of the conlanging beast!